
MATH 147, SPRING 2021: FINAL EXAM PRACTICE PROBLEMS

Below are problems to practice for the final exam. The problems below, together with the problems from
the three midterm exams, are a good representation of what to expect on the final exam. There will also be
a few short answer questions on the final exam.

1. Let f(x, y) =

{
x2 + y2, if x2 + y2 < 1

1, if x2 + y2 ≥ 1.
. Determine at which points f(x, y) is continuous.

Solution. Note that g(x, y) = x2 + y2 and h(x, y) = 1 are both continuous on all of R2. Thus, if we let D
denote the unit disk 0 ≤ x2+y2 ≤ 1, then g(x, y) is continuous on the interior of D and h(x, y) is continuous
on R2\D, and thus f(x, y) is continuous on both the interior of D and R2\D. For points (a, b) on the
boundary of D, a2+ b2 = 1, and we can consider lim(x,y)→(a,b) f(x, y). Let ϵ > 0. Since g(x, y), as a function
on R2, is continuous at (a, b) there exists δ > 0 such that ||(x, y) − (a, b)|| < δ implies |g(x, y) − g(a, b)| =
|g(x, y)−1| < ϵ. Taking the same δ, if ||(x, y)−(a, b)|| < δ and (x, y) ∈ D, then g(x, y) = f(x, y), which gives
|f(x, y)−f(a, b)| = |g(x, y)−1| < ϵ. If (x, y) ̸∈ D, then f(x, y)−f(a, b) = 1−1 = 0, so |f(x, y)−f(a, b)| < ϵ.
Thus f(x, y) is continuous at (a, b).

2. Show that the function f(x, y) =

{
2x−1)(sin(y))

xy , if xy ̸= 0

ln(2), if xy = 0
is continuous at (0,0).

Solution. Set g(x) =

{
2x−1

x if x ̸= 0
ln(2) if x = 0

and h(y) =

{
sin(y)

y if y ̸= 0

1 if y = 0
. Then f(x, y) = g(x)h(y).

Thus, lim(x,y)→(0,0) f(x, y) = {limx→0 g(x)} · {limy→0 h(y)}. By L’Hospital’s Rule, limx→0 g(x) = ln(2)
and limy→0 h(y) = 1. Therefore, lim(x,y)→(0,0) f(x, y) = ln(2).
3. Use the limit definition to show that f(x, y) = 5x+ 4y2 is differentiable at (2,1).
Solution. ∂f

∂x (2, 1) = 5, ∂f
∂y (2, 1) = 8, and f(2, 1) = 14, so L(x, y) = 5(x− 2) + 8(y − 1) + 14. Therefore,

f(x, y)− L(x, y) = 5x+ 4y2 − (5x− 10 + 8y − 8 + 14)

= 4y2 − 8y + 4

= 4(y − 1)2.

Thus, f(x,y)−L(x,y)√
(x−2)2+(y−1)2

= 4(y−1)2√
(x−2)2+(y−1)2

≤ 4(y−1)2√
(y−1)2

= 4|y − 1|. Therefore,

lim
(x,y)→(2,1)

f(x, y)− L(x, y)√
(x− 2)2 + (y − 1)2

≤ lim
y→1

4|y − 1| = 0,

which shows that f(x, y) is differentiable at (2,1).
4. From class, we saw that if the first order partial derivatives of f(x, y) are continuous in a neighborhood
of (a, b), then f(x, y) is differentiable at (a, b). This problem shows why those conditions are necessary. Let

g(x, y) =

{
2xy(x+y)
x2+y2 , if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)
.

Show that:
(i) g(x, y) is continuous at (0, 0).
(ii) Use the limit definitions to show that gx(0, 0) and gy(0, 0) exist and are equal to 0.
(iii) Conclude that L(x, y) = 0.
(iv) Show that g(x, y) is not differentiable at (0,0).
(v) Show that gx(x, y) is not continuous at (0,0).
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Solution. (i) Taking limits, we have.

lim
(x,y)→(0,0)

g(x, y) = lim
r→0

2r2 cos(θ) sin(θ)(r cos(θ) + r sin(θ))

r2

= lim
r→0

r · {2 cos(θ) sin(θ)(cos(θ) + sin(θ))}

= 0

= g(0, 0),

so g(x, y) is continuous at (0,0).

(ii) ∂g
∂x (0, 0) = limh→0

g(0+h,0)−g(0,0)
h = limh→0

0
h = 0. ∂g

∂y (0, 0) = limh→0
g(0,0+h)−g(0,0)

h = limh→0
0
h = 0.

(iii) L(x, y) = 0(x− 0) + 0(y − 0) = 0.

(iv) Thus, g(x, y)−L(x, y) = g(x, y). If g(x, y) were differentiable at (0,0), then the limit (when (x, y) ̸= (0, 0))

lim
(x,y)→(0,0)

g(x, y)√
x2 + y2

= lim
(x,y)→(0,0)

2xy(x+ y)

(x2 + y2)
3
2

should equal zero. If we take the limit along the line y = x, then g(x,y)√
x2+y2

= 4x3

2
√
2x3

=
√
2, so the limit along

the line y = x as x → 0 is not 0. Thus, g(x, y) is not differentiable at (0,0).

(v) Differentiating the non-zero part of g(x, y) gives gx(, y) = −2x2y2+4xy3+2y4

(x2+y2)2 . If we take the limit along the
line y = 0, then lim(x,y)→(0,0) gx(x, y) = 0, while if we take the limit along the line x = 0, the limit becomes
2. Thus, lim(x,y)→(0,0) gx(x, y) does not exist, so that gx(x, y) is not continuous at (0,0).

5. Find and classify the critical points for f(x, y) = x4 − 4xy + 2y2.

Solution. To find critical points we solve

fx = 4x3 − 4y = 0

fy = −4x+ 4y = 0.

Form the second equation, we get x = y. Using this in the first equation gives 4x3 − 4x = 0, so that
x = 0,−1, 1. Thus, the critical points are (0,0), (-1,-1), and (1,1). For the discriminant, we have

D = fxxfyy − f2
xy = (12x2)4− (−4)2 = 48x2 − 16.

For (0,0): D(0, 0) = −16, so that f(x, y) has a saddle point at (0,0).

For (-1,-1): D(−1,−1) = 32 > 0 and fxx(−1,−1) = 12 > 0. Thus, f(x, y) has a relative minimum value (of
-3) at (-1,-1).

For (1,1): D(1, 1) = 32 > 0 and fxx(1, 1) = 12 > 0. Thus, f(x, y) has a relative minimum value (of -3) at
(1,1).

6. Find the absolute maximum and absolute minimum values of f(x, y) = x2y on the closed and bounded
set D : 0 ≤ 4x2 + 9y2 ≤ 36.

Solution. Solving

fx = 2xy = 0

fy = x2 = 0

we see that x = 0, and y can be any real number. Thus, critical points in the interior of D are of the
form (0, y) with 0 ≤ 9y2 ≤ 36. However, f(0, y) = 0 for all such points. On the boundary of D, we must
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maximize and minimize f(x, y) subject to the constraint 4x2 + 9y2 = 36. Calling this equation g(x, y), we
set ∇f = λ∇g and solve the resulting system of equations

2xy = λ8x

x2 = λ18y

4x2 + 9y2 = 36.

Notice that if x or y equal 0, then f(x, y) = 0. So we can assume neither x nor y is zero. Dividing the first
equation by 2x give y = 4λ. Using this in the second equation gives x2 = 72λ2. Putting both of these into
the constraint equations gives 4(72λ2) + 9(4λ)2 = 36, so that

3λ2 =
36

144
,

so that λ = ± 1√
12

. Thus, y = ± 4√
12

and x = ±
√
6. Thus, substituting these into x2y gives ± 24√

12
= ±4

√
3.

Thus, on the domain D, the maximum value of f(x, y) is 4
√
3 and the minimum value is −4

√
3. Note that

the critical points (0, y) do note determine a minimum or maximum value of f(x, y) on D.

7. Let S be the surface parametrized by G(u, v) = (2u sin( v2 ), 2u cos(
v
2 ), 3v), with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π.

(i) Find the tangent plane to S at the point P = G(1, π
3 ).

(ii) Find the surface area of S.

Solution.

Tu ×Tv =

∣∣∣∣∣∣
i j k

2 sin(v/2) 2 cos(v/2) 0
u cos(v/2) −u sin(v/2) 3

∣∣∣∣∣∣ = (6 cos(v/2),−6 sin(v/2),−2u).

Therefore, Tu ×Tv(1,
π
3 ) = (3

√
3,−3,−2), since G(1, π

3 ) = (1,
√
3, π), for the tangent plane we have:

3
√
3(x− 1)− 3(y −

√
3)− 2(z − π) = 0.

For the surface area, we have ||Tu ×Tv|| =
√
36 + 4u2 = 2

√
9 + u2.

Surface area =

∫ ∫
D

||Tu ×Tv|| dA

=

∫ 2π

0

∫ 1

0

2
√
9 + u2 dudv

= 4π

∫ 1

0

√
9 + u2 du

= 4π{u
2

√
9 + u2 +

9

2
ln |u+

√
9 + u2|}

∣∣∣∣1
0

(using a table of integrals)

= 4π{
√
10

2
+

9

2
ln(1 +

√
10)− 9

2
ln(3)}

= 4π{
√
10

2
+

9

2
ln(

1 +
√
10

3
)}.

8. Let C be a curve from the point P to the point Q in the xy-plane. Let R be the region enclosed by C
and the two radial lines from the origin to P and Q. (See the figure below.) Use Green’s Theorem to show
that

∫
C
F · dr gives the area of R, for F = −y

2 i⃗+
x
2 j⃗.
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Solution. Let D denote the oriented closed curve forming the boundary of R, namely, the line segment from
the origin to P , followed by C, followed by the line segment from Q to the origin. We take F = (−1

2 y, 1
2x),

so that by Green’s Theorem,
∫
D
F · dr equals the area enclosed by the closed curve D. Let C1 denote the

line segment from (0,0) to P = (a, b), C2 denote the line segment from Q = (c, d) to (0,0), and C the curve
given in the illustration. Let D = C1 ∪ C ∪ C2 so that

area(R) =

∫
D

F · dr =

∫
C1

F · dr+
∫
C

F · dr+
∫
C2

F · dr.

We have to show
∫
C1

F · dr =
∫
C2

F · dr = 0.

Take r1(t) = (at, bt), 0 ≤ t ≤ 1 for the parametrization of C1. Then F(r(t)) = (− 1
2bt,

1
2at) and r′(t) = (a, b).

Therefore F(r(t)) · r′(t) = − 1
2abt +

1
2abt = 0. So

∫
C1

F · dr = 0. The calculation showing
∫
C2

F · dr = 0 is
similar.

9. Let C be the triangle with vertices (1,0,0), (0,2,0), (0,0,1). Compute
∫
C
F · dr, for the vector field

F = (x2 + yz, x+ y, y − z2).

Solution. We have to integrate along each side of the triangle. C1 : r(t) = (1 − t, 2t, 0)., with 0 ≤ t ≤ 1.
r′(t) = (−1, 2, 0). F(r(t)) = ((1− t)2, 1 + t, 2t).∫

C1

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

−(1− t)2 + 2 + 2t dt

=

∫ 1

0

−1 + 2t− t2 + 2 + 2t dt

=

∫ 1

0

1 + 4t− t2 dt

= 1 + 2− 1

3
=

8

3
.

C2 : r(t) = (0, 2− 2t, t), 0 ≤ t ≤ 1, r′(t) = (0,−2, 1), F(r(t)) = (2t− 2t2, 2− 2t, 2− 2t− t2).∫
C2

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

−4 + 4t+ 2− 2t− t2 dt

=

∫ 1

0

−2 + 2t− t2 dt

= −2 + 1− 1

3
= −4

3
.
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C3 : r(t) = (t, 0, 1− t), r′(t) = (1, 0,−1), F(r(t)) = (t2, t,−(1− t)2).∫
C2

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

t2 + (1− t)2 dt

= { t
3

3
− (1− t)3

3
}
∣∣∣∣1
0

=
1

3
− (−1

3
) =

2

3
.

Therefore, ∫
C

F · dr =

∫
C1

F · dr+
∫
C

F · dr+
∫
C2

F · dr =
8

3
− 4

3
+

2

3
= 2.

10. Let f(x, y) =
√
|xy|. Write out details showing:

(a) ∂f
∂x (0, 0) and ∂f

∂y (0, 0) exist.
(b) f(x, y) is not differentiable at (0,0).
(c) Part (b) does not contradict part (a).

Solution.

2.(a) ∂f
∂x (0, 0) = limh→0

f(0+h,0)−f(0,0)
h = limh→0

0
h = 0. The calculation for ∂f

∂y (0, 0) is similar.

(b) From (a), the linear approximation to f(x, y) at (0,0) is L(x, y) = 0. Therefore, f(x, y)−L(x, y) = f(x, y).
In order for f(x, y) to be differentiable at (0,0), the limit

lim
(x,y)→(0,0)

f(x, y)− L(x, y)√
x2 + y2

= lim
(x,y)→(0,0)

f(x, y)√
x2 + y2

should be 0. Taking the limit along the line y = x, we have

lim
(x,y)→(0,0)

f(x, y)√
x2 + y2

= lim
x→0

√
|x2|

√
2
√
x2

=
1√
2
̸= 0.

Therefore, f(x, y) is not differentiable at (0,0).

(c) Part (b) does not contradict part (a) because the first order partial derivatives of f(x, y) are not continuous
at (0,0). In fact, the partial derivatives of f(x, y) are not defined at all points (x, y) near (0,0), so we cannot
evaluate the required limit to test continuity. To see this, let’s try to calculate ∂f

∂x along the line x = 0, with
y ̸= 0.

∂f

∂x
(0, y) = lim

h→0

f(0 + h, y)− f(0, y)

h
= lim

h→0

|hy| − 0

h
= |y| lim

h→0

|h|
h
,

which does not exist.

11. Evaluate
∫ ∫

S
CurlF · dS, for F = (−y + z sin(x), x, z3) and S the surface defined by the equation

x2 + y2

4 + z2 + z4x2 = 1, with z ≥ 0.

Solution. We use Stoke’s Theorem. The surface lies above the xy-plane, and intersects the xy-plane along
the ellipse x2 + y2

4 = 1. By Stokes Theorem,
∫ ∫

S
Curl F · dS =

∫
C
F · dr, for C : (cos(t), 2 sin(t), 0), with

0 ≤ t ≤ 2π. Note that the orientation of C is consistent with what is required by Stoke’s Theorem.
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r′(t) = (− sin(t), 2 cos(t), 0) and F(r(t)) = (−2 sin(t), cos(t), 0). Therefore,∫ ∫
S

Curl F · dS =

∫
C

F · dr

=

∫ 2π

0

F(r(t)) · r′(t) dt

=

∫ 2π

0

2 dt

= 4π.

12. Verify the Divergence Theorem for F = (−x2, y2,−z2) and S rectangular box [0, 3]× [−1, 2]× [1, 2].

Solution. Div (F) = −2x+ 2y − 2z, therefore if B is the solid contained in the given rectangular box,

∫ ∫ ∫
B

Div F dV =

∫ 2

1

∫ 2

−1

∫ 3

0

−2x+ 2y − 2z dxdydz

=

∫ 2

1

∫ 2

−1

(−x2 + 2xy − 2xz)

∣∣∣∣x=3

x=0

dydz

=

∫ 2

1

∫ 2

−1

−9 + 6y − 6z dydz

=

∫ 1

0

(−9y + 3y2 − 6yz)

∣∣∣∣y=2

y=−1

dz

=

∫ 2

1

−18− 18z dz

= (−18z − 9z2)

∣∣∣∣z=2

z=1

= (−36− 36)− (−18− 9)

= −45.

To calculate the surface integral, we must sum the integrals over each face of the given rectangular box.

Front Face, S1: S1 is given by (3, y, z), with −1 ≤ y ≤ 2, 1 ≤ z ≤ 2 and n = i. We will see the bounds on y
and z are just used to calculate the area of the front face. The same will hold for the other five faces. So:
F on S1 is given by (−9, y2,−z2) and thus F · n = −9. Therefore,∫ ∫

S1

F · dS =

∫ ∫
S1

F · n dS

=

∫ ∫
S1

−9 dS

= −9 · area(S1)

= −9 · 3 = −27.

Back Face, S2: S1 is given by (0, y, z), with −1 ≤ y ≤ 2, 1 ≤ z ≤ 2 and n = −i. F on S2 is given by
(0, y2,−z2) and thus F · n = 0. Therefore,

∫ ∫
S2

F · dS =
∫ ∫

S2
F · n dS = 0.
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Left Face, S3: S3 is given by (x,−1, z), with 0 ≤ x ≤ 3, 1 ≤ z ≤ 2 and n = −j. F on S3 is given by
(−x2, 1,−z2) and thus F · n = −1. Therefore,∫ ∫

S3

F · dS =

∫ ∫
S3

F · n dS

=

∫ ∫
S3

−1 dS

= −1 · area(S3)

= −1 · 3 = −3.

Right Face, S4: S4 is given by (x, 2, z), with 0 ≤ x ≤ 3, 1 ≤ z ≤ 2 and n = j. F on S4 is given by
(−x2, 4,−z2) and thus F · n = 4. Therefore,∫ ∫

S4

F · dS =

∫ ∫
S4

F · n dS

=

∫ ∫
S4

4 dS

= 4 · area(S3)

= 4 · 3 = 12.

Top Face, S5: S5 is given by (x, y, 2), with 0 ≤ x ≤ 3, −1 ≤ y ≤ 2 and n = k. F on S5 is given by
(−x2, y2,−4) and thus F · n = −4. Therefore,∫ ∫

S5

F · dS =

∫ ∫
S5

F · n dS

=

∫ ∫
S5

−4 dS

= −4 · area(S5)

= −4 · 9 = −36.

Bottom Face, S6: S6 is given by (x, y, 1), with 0 ≤ x ≤ 3, −1 ≤ y ≤ 2 and n = −k. F on S6 is given by
(−x2, y2,−1) and thus F · n = 1. Therefore,∫ ∫

S6

F · dS =

∫ ∫
S6

F · n dS

=

∫ ∫
S6

1 dS

= 1 · area(S6)

= 1 · 9 = 9.

Putting these all together we have
∫ ∫

S
F · dS = −27 + 0− 3 + 12− 36 + 9 = −45.

13. Let F = (z2, x2,−y2). Evaluate
∫
C
F · dr, where C is the path traversing counterclockwise the square

with sides of length s centered at (x0, y0, 0). Then divide this number by the area of the square and take
the limit as s → 0. Compare this with (Curl F)(x0, y0, 0) · k.

Solution. In this problem we are using the limit definition to calculate (Curl F)(x0, y0, 0) · k. For this, we
must compute a line integral of F over each side of the square C.
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Bottom side, C1: C1 is given by r(t) = (x0 − s
2 , y0 − s

2 , 0) + t(s, 0, 0), with 0 ≤ t ≤ 1. r′(t) = (s, 0, 0),
F(r(t)) = (0, (x0 − s

2 )
2,−(y0 − s

2 )
2). ∫

C1

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

0 dt

= 0.

Top side, C2: C2 is given by r(t) = (x0 + s
2 , y0 + s

2 , 0) + t(−s, 0, 0), with 0 ≤ t ≤ 1. r′(t) = (−s, 0, 0),
F(r(t)) = (0, (x0 +

s
2 )

2,−(y0 +
s
2 )

2). ∫
C1

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

0 dt

= 0.

Right side, C3: C3 is given by r(t) = (x0 + s
2 , y0 − s

2 , 0) + t(0, s, 0), with 0 ≤ t ≤ 1. r′(t) = (0, s, 0),
F(r(t)) = (0, (x0 +

s
2 )

2,−(y0 − s
2 )

2). ∫
C1

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

(x0 +
s

2
)2s dt

= x2
0s+ x0s

2 +
s3

4
.

Left side, C4: C4 is given by r(t) = (x0 − s
2 , y0 + s

2 , 0) + t(0,−s, 0), with 0 ≤ t ≤ 1. r′(t) = (0,−s, 0),
F(r(t)) = (0, (x0 − s

2 )
2,−(y0 +

s
2 )

2). ∫
C1

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

−(x0 −
s

2
)2s dt

= −x2
0s+ x0s

2 +−s3

4
.

We now have∫
C

F·dr =

∫
C1

F·dr+
∫
C2

F·dr+
∫
C3

F·dr+
∫
C4

F·dr = 0+0+(x2
0+x0s

2+
s3

4
)+(−x2

0+x0s
2+−s3

4
) = 2s2x0.

Therefore,
lim
s→0

1

area(S)

∫
C

F · dr = lim
s→0

1

s2
2s2x0 = 2x0.

To Check:

Curl F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

z2 x2 −y2

∣∣∣∣∣∣ = (−2y, 2z, 2x).

Thus, Curl F(x0, y0, z0) = (−2y0, 2z0, 2x0) and Curl F(x0, y0, z0) · k = 2x0.
14. Let C be the curve obtained by intersecting the cylinder x2 + y2 = 1 with the plane x+ y + z = 1, and
F = −y3⃗i + x3j⃗ + −z3k⃗. Set up the line integral

∫
C
F · dr as a single integral over an interval of the form

[a, b]. Now evaluate this line integral by using Stoke’s Theorem.
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Solution. The curve C lies on the plane z = 1−x−y but also on the cylinder x2+y2 = 1. So a parametrization
and tangent of C are

r(t) = (cos(t), sin(t), 1− cos(t)− sin(t)) and r′(t) = (− sin(t), cos(t), sin(t)− cos(t)).

F(r(t)) = (− sin3(t), cos3(t),−(1− cos(t)− sin(t))3).

F(r(t)) · r′(t) = sin4(t) + cos4(t)− (1− cos(t)− sin(t))3 · (sin(t)− cos(t)).

Integrating this last expression from 0 to 2π is doable .... but not much fun.

To apply Stoke’s Theorem we will integrate ∇× F over S, that portion of the given plane lying above the
disk D : 0 ≤ x2 + y2 ≤ 1 in the xy-plane.

∇× F =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

−y3 x3 −z3

∣∣∣∣∣∣ = (3x2 + 3y2)k⃗ = (0, 0, 3x2 + 3y2).

S is given by G(u, v) = (u, v, 1− u− v), with 0 ≤ u2 + v2 ≤ 1. Thus,

Tu ×Tv =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
1 0 −1
0 1 −1

∣∣∣∣∣∣ = i⃗+ j⃗ + k⃗ = (1, 1, 1).

Moreover, ∇× F on S is (0, 0, 3u2 + 3v2). Thus, on S,

(∇× F) ·Tu ×Tv = (0, 0, 3u2 + 3v2) · (1, 1, 1) = 3u2 + 3v2.

Therefore: ∫ ∫
S

∇× F · dS =

∫ ∫
D

3u2 + 3v2 dA

= 3

∫ 2π

0

∫ 1

0

r2 · r drdθ

= 6π

∫ 1

0

r3 dr

=
6π

4
=

3π

2
.

15. Verify Stoke’s Theorem for F = (z2,−y2, 0) and C the square of side 1 oriented as shown, lying in the
xz-plane and S the open box with sides S1, S2, S3, S4, S5. What happens, if instead, you take S to be the
square enclosed by C?

Solution. Both terms in Stoke’s Theorem require computing several integrals. We start by computing∫
C
F · dr, where C = C1 ∪ C2 ∪ C3 ∪ C4 is the curve indicated in the diagram.
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C1 : r(t) = (1− t, 0, 0), 0 ≤ t ≤ 1, r′(t) = (−1, 0, 0), F(r(t)) = (0, 0, 0).∫
C1

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

0 dt

= 0.

C2 : r(t) = (0, 0, t), 0 ≤ t ≤ 1, r′(t) = (0, 0, 1), F(r(t)) = (t2, 0, 0).∫
C2

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

0dt

= 0.

C3 : r(t) = (t, 0, 1), 0 ≤ t ≤ 1, r′(t) = (1, 0, 0), F(r(t)) = (1, 0, 0).∫
C3

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

1 dt

= 1.

C4 : r(t) = (1, 0, 1− t), 0 ≤ t ≤ 1, r′(t) = (0, 0,−1), F(r(t)) = ((1− t)2, 0, 0).∫
C3

F · dr =

∫ 1

0

F(r(t)) · r′(t) dt

=

∫ 1

0

0 dt

= 0.

We now have,∫
C

F · dr =

∫
C1

F · dr+
∫
C2

F · dr+
∫
C3

F · dr+
∫
C4

F · dr = 0 + 0 + 1 + 0 = 1.

To calculate the curl of F

Curl F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

z2 −y2 0

∣∣∣∣∣∣ = (0, 2z, 0).

For the surface integral
∫ ∫

S
Curl F · dS is the sum of the surface integrals of the curl of F over the five faces

indicated in the diagram.

Front Face, S1: S1 is given by (1, y, z), with 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and n = i. Curl F on S1 is given by
(0, 2z, 0) and thus F · n = 0. Therefore,∫ ∫

S1

Curl F · dS =

∫ ∫
S1

Curl F · n dS

=

∫ ∫
S1

0 dS

= 0.
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Back Face, S2: S2 is given by (0, y, z), with 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and n = −i. Curl F on S2 is given by
(0, 2z, 0) and thus F · n = 0. Therefore,∫ ∫

S2

Curl F · dS =

∫ ∫
S2

Curl F · n dS

=

∫ ∫
S3

0 dS

= 0.

Top Face, S3: S3 is given by (x, y, 1), with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and n = k. Curl F on S3 is given by (0, 2, 0)
and thus F · n = 0. Therefore, ∫ ∫

S3

Curl F · dS =

∫ ∫
S3

Curl F · n dS

=

∫ ∫
S3

0 dS

= 0.

Bottom Face, S4: S4 is given by (x, y, 0), with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and n = −k. Curl F on S4 is given by
(0, 0, 0) and thus F · n = 0. Therefore,∫ ∫

S4

Curl F · dS =

∫ ∫
S4

Curl F · n dS

=

∫ ∫
S4

0 dS

= 0.

Right Face, S5: S5 is given by (x, 1, z), with 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 and n = j. Curl F on S5 is given by
(0, 2z, 0) and thus F · n = 2z. Therefore,∫ ∫

S5

Curl F · dS =

∫ ∫
S5

Curl F · n dS

=

∫ ∫
S5

2z dS

=

∫ 1

0

∫ 1

0

2z dz dx

=

∫ 1

0

2z dz

= 1.

Putting these all together we have
∫ ∫

S
Curl F · dS = 0+ 0+ 0+ 0+ 1 = 1, as expected, thereby confirming

Stoke’s Theorem.

Finally, an important consequence of Stoke’s theorem is that the surface integrals of Curl F over two surfaces
sharing a common oriented boundary are the same. Let S0 be the left face of the square in the diagram, so
that S and S0 share the same oriented boundary.

S0 is given by (x, 0, z), with 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 and n = j. Note that j is the correct normal when
considering S0 as an open, oriented surface with boundary C. If we were considering S0 as the 6th side of
the cube, we would take −j as the unit normal. Curl F on S0 is given by (0, 2z, 0) and thus Curl F ·n = 2z.
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Therefore, ∫ ∫
S0

Curl F · dS =

∫ ∫
S0

F · n dS

=

∫ ∫
S0

2z dS

=

∫ 1

0

∫ 1

0

2z dz dx

=

∫ 1

0

2z dz

= 1

=

∫ ∫
S

Curl F · dS.

16. Calculate, without using Stoke’s Theorem,
∫ ∫

S1
∇×F ·dS, for F = (3y2+2y)⃗i+3z2j⃗+3x2k⃗ and S1 the

inverted cone z = 1−
√
x2 + y2, with vertex (0, 0, 1), and z ≥ 0. Then calculate directly

∫ ∫
S2

∇×F ·dS, for
S2 the unit disk in the xy-plane. The answers you get should be the same. This shows the consequence of
Stoke’s Theorem, that surfaces integrals of the curl of a vector field over surfaces sharing the same boundary
are independent of the surface.

Solution. ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

3y2 + 2y 3z2 3x2

∣∣∣∣∣∣ = (−6z,−6x,−6y − 2).

If we integrate directly over the cone, we use the parametrization

G(u, v) = (v cos(u), v sin(u), 1− v),

with 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1. It follows that

∇× F(G(u, v)) = (−6(1− v),−6v cos(u),−6v sin(u)− 2).

Moreover,
Tu ×Tv = (v cos(u), v sin(u),−v).

Note that this vector, has a negative z-component, and thus is inside of the inverted cone. If we flatten the
cone, this would point downward, and contradict the right hand thumb rule. Thus, we need to use the vector
−(Tu×Tv) when integrating ∇F. (An important point: We could also parametrize the inverted cone using
H(u, v) = (u, v, 1 −

√
u2 + v2), with 0 ≤ u2 + v2 ≤ 1, and in this case Tu × Tv gives the correct normal

vector.)

We now have

{∇ × F(G(u, v))} · −(Tu ×Tv) = 6v(1− v) cos(u) + 6v2 sin(u) cos(u)− 6v2 sin(u)− 2v.

When we calculate
∫ ∫

S
(∇× F) · dS, first integrating with respect to u, the trig terms integrated from 0 to

2π all become 0. We are left with, ∫ 1

0

∫ 2π

0

−2v dudv = 2π

∫ 1

0

−2v dv

= −4π · v
2

2

∣∣∣∣1
0

= −2π.

To integrate over the disk we have G(u, v) = (u, v, 0) with 0 ≤ u2 + v2 ≤ 1 and Tu × Tv = (0, 0, 1).
∇× F(G(u, v)) = (0,−6u,−6v − 2), so ∇× F(G(u, v)) ·Tu ×Tv = −6v − 2. Thus,
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∫ ∫
S2

(∇× F) · dS =

∫ ∫
S2

−6v − 2 dA

=

∫ 2π

0

∫ 1

0

(−6r sin(θ)− 2) rdrdθ

=

∫ 2π

0

∫ 1

0

−6r2 sin(θ)− 2r dr dθ

=

∫ 2π

0

−2 sin(θ)− 1 dr

= −2π,

which is what we want.
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